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ABSTRACT

Recently there has been an interest in single and multichan-
nel sampling of certain parametric signals based on rate of
innovation using exponential reproducing kernels. In [5] it
was shown that, using exponential reproducing kernels, we
can achieve a fully symmetric multichannel sampling system
where different channels receive translated versions of the in-
put signal. For the case of bilevel polygons as the input signal
considered in [5], having only translations is not practical and
one may want to look at the cases of more complicated geo-
metric transformations, such as rotation and scaling. In this
paper we present a sampling theorem for multichannel sam-
pling of translated, rotated and scaled bilevel polygons using
Radon projections and generalized exponential splines.

1. INTRODUCTION

Recently, it was shown [1, 2] that it is possible to sample and
perfectly reconstruct some classes of non-bandlimited signals
using suitable sampling kernels. Signals that can be recon-
structed using this framework are called signals with Finite
Rate of Innovation (FRI) as they can be completely defined
by a finite number of parameters. Stream of weighted Dirac
impulses and bilevel polygons are some examples of FRI sig-
nals.

There has been a recent interest in sampling FRI signals
using exponential spline [3] (E-spline) kernels. Dragotti et
al. [2] showed that E-splines can be used as the sampling
kernel to sample and perfectly reconstruct 1-D FRI signals.
Extensions to the multidimensional case were considered in
[5, 14] where we proposed sampling theorems for a stream of
2-D Dirac impulses (based on the ACMP algorithm [11]) and
bilevel polygons (based on Radon projections [10]). Apart
from the sampling kernels used in [5, 14], the reconstruction
algorithms are also different from the ones used in the con-
ventional multidimensional sampling theories [12, 13].

An advantage of E-spline sampling kernels over polyno-
mial reproducing kernels such as B-splines is that, they can be
employed in a fully symmetric multichannel sampling envi-
ronment. By symmetric sampling, we mean that the sampling

process can be evenly distributed between different acquisi-
tion devices. The inspiration and development of multichan-
nel sampling of FRI signals is very recent and it has been
looked at in [5, 6, 7, 8].

In [6] Seelamantula and Unser, by using simple RC fil-
ters, propose a simple acquisition and reconstruction method
within the framework of multichannel sampling, where 1-D
FRI signals such as an infinite stream of nonuniformly-spaced
Dirac impulses and piecewise-constant signals can be sam-
pled and perfectly reconstructed. In [7] Kusuma and Goyal
proposed new ways of sampling 1-D Dirac impulses using a
bank of integrators or B-splines. Their proposed scheme is
closely related to previously known cases [1, 2] but provides
a successive approximation property, which could be useful
for detecting undermodelling when the number of Dirac im-
pulses are unknown. In [8] Baboulaz and Dragotti use a mul-
tichannel sampling setup for sampling FRI signals and utilize
that for image registration based on continuous moments and
image super-resolution.

In [5] we illustrate that symmetric multichannel sampling
of bilevel polygons can be achieved with the geometric trans-
formations being a 2-D translation between the different sig-
nals. In practice, this is usually not the case, and in this paper
we want to look at the cases of more complicated geomet-
ric transformations, such as rotation and scaling. The paper
is organised as follows: In Section II we will briefly discuss
the sampling setup needed for sampling 2-D FRI signals (sin-
gle channel) and based on that we describe our multichannel
sampling setup. In Section III we present our algorithm for
sampling and perfectly reconstructing translated, rotated and
scaled bilevel polygons with the use of generalized E-splines
and Radon projections. In Section IV we provide simulation
results to support our proposed theory.

2. MULTICHANNEL SAMPLING SETUP

Before describing the multichannel sampling framework, let
us first, for the sake of clarity, show how a general 2-D sam-
pling setup (single channel) for FRI signals is represented.
Figure 1 shows a general 2-D sampling setup for FRI signals



where g(x, y) represents the input signal, ϕ(x, y) the sam-
pling kernel, sj,k the samples and Tx, Ty are the sampling
intervals. From the setup shown in Figure 1, the samples sj,k

Fig. 1. 2-D sampling setup

are given by:
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where the kernel ϕ(x, y) is the time reversed version of the
filter response h(x, y). ϕ(x, y) can easily be produced by
the tensor product between ϕ(x) and ϕ(y), that is ϕ(x, y) =
ϕ(x) ⊗ ϕ(y). As mentioned before, ϕ(x, y) is chosen to be
an exponential reproducing kernel. The theory of exponential
reproducing kernels is quite recent and is based on the notion
of exponential splines (E-splines) [3]. A function β~α(x) with
Fourier transform

β̂~α(ω) =
N∏

n=0

1− eαn−jω

jω − αn

is called E-spline of order N where ~α = (α0, α1, . . . , αN )
can be real or complex. The produced spline has a com-
pact support and can reproduce any exponential in the sub-
space spanned by (eα0t, eα1t, . . . , eαN t) which is obtained by
successive convolutions of lower order E-splines ((N+1)-fold
convolution). Exponential spline kernels can therefore repro-
duce, with their shifted versions, real or complex exponen-
tials. That is, in 2-D form, any kernel satisfying:∑

j∈Z

∑
k∈Z

cm,n
j,k ϕ(x− j, y − k) = eαmxeβny (2)

is an E-spline for a proper choice of the coefficients cm,n
j,k .

Here, m = 0, 1, . . . ,M , n = 0, 1, . . . , N , αm = α0 + mλ1

and βn = β0 + nλ2. The values of (α0, β0) and (λ1, λ2) can
be chosen arbitrarily, but too small or too large values could
lead to unstable results for the reproduction of exponentials.
E-splines are biorthogonal functions and the coefficients cm,n

j,k

can be found using the dual of β~α(x). An important property
of E-splines is that they are a generalized version of B-splines.
This is because, if the ~α parameters are set to zero, then the
produced spline would result in a B-spline, a polynomial re-
producing spline. This property will be used to estimate the
transformation parameters in Section III. The reader can refer
to [5, 14] for sampling theories on single-channel sampling
and perfect reconstruction of 2-D Dirac impulses and bilevel
polygons using exponential splines.

We can now describe our multichannel sampling setup.
A multichannel sampling system can be thought of multi-
ple acquisition devices observing an input signal. In order
to perfectly reconstruct the input signal using only one ac-
quisition device, we normally require expensive acquisition
devices with high sampling rates. By using a bank of acqui-
sition devices (filters) and synchronizing the different chan-
nels exactly, we are able to reduce the number of samples
needed from each device, resulting in a cheaper and more
efficient sampling system. To model our multichannel sys-
tem, consider a bank of E-spline filters to acquire FRI sig-
nals where each filter has access to a geometrically trans-
formed version of the input signal. Figure 2 shows the de-
scribed multichannel sampling scenario where the bank of fil-
ters ϕ1(x, y), ϕ2(x, y), . . . , ϕN−1(x, y) receive different ver-
sions of the input signal g0(x, y). Here, the geometric trans-
formations (e.g. translation, rotation and scaling ) are denoted
by T1, T2, . . . , TN−1.

Fig. 2. Multichannel sampling setup

In [4] Baboulaz considered the use of E-splines for sam-
pling a stream of 1-D Dirac impulses in a multichannel sam-
pling setup described in Figure 2. He showed that if two 1-D
signals are just shifted version of the other, then by setting
one parameter to be common between the exponents of the
E-spline sampling kernels for the two signals, one can not
only estimate the shifts between the two signals, but also can
linearly relate the exponential moments of the two signals
(the reader can refer to [4, 5, 14] for more detailed discus-
sion). Because of the direct relationship between the expo-
nential moments of the two signals, we can achieve perfect
reconstruction of the reference signal with fewer exponen-
tial moments required. Since less moments are required from
each signal, a lower order E-spline sampling kernel would
be needed, which in turn less samples from each signal are
required to achieve perfect reconstruction. This is because,
from [2] we know that a stream of Dirac impulses is uniquely
determined from the samples if there are at most K Dirac im-
pulses in an interval size of 2KLT where L is the support of
the sampling kernel. Since the support of the sampling ker-
nels is reduced in the multichannel case, we can achieve the
same performance with a smaller sampling rate T .



3. ALGORITHM

Unfortunately we can not estimate the more complicated geo-
metric transformations like the way it was done for the simple
translation case in [5] with exponential reproducing kernels.
Also, even if we assume that the transformation parameters
are known and given, we still can not use the sampling algo-
rithm shown in [5] for the multichannel framework. This is
because introducing more complicated transforms such as ro-
tation and/or scaling for example, would result in a non-linear
relationship between the exponential moments of the different
signals.

The first question we need to answer is that, assuming
an oracle gives us the values of the transformation parame-
ters, can we sample and perfectly reconstruct translated, ro-
tated and scaled bilevel polygons in a symmetric multichan-
nel framework? It is known that for an N-sided bilevel poly-
gon, with N+1 projections, perfect reconstruction of the poly-
gon can be achieved. That is points that have N+1 line in-
tersections from the N+1 back-projections correspond to the
N vertices of the polygon [9]. We also know that a Radon
projection at an angle φ of a rotated image with respect to
its reference image with an angle θ, is the same projection,
but scaled and translated, on the reference image at the an-
gle φ + θ. Therefore, if all the transformation parameters
are known, and assuming that the rotation angle is not zero
that is, θ 6= 0, then the N + 1 projections needed could be
separated between the different channels, in order to sample
and perfectly reconstruct the reference image in a symmetric
manner.

The next question would be, how can we estimate the
transformation parameters? We know that with the use of
polynomial reproducing kernels, we can obtain the geomet-
ric moments of a signal, and geometric moments up to order
2 from two signals are enough to estimate translation, rota-
tion and scaling parameters between the two signals. We also
know that, as E-splines are a generalized version of B-splines
[3], we can reproduce a combination of polynomials and ex-
ponentials from E-splines. From the polynomials moments up
to order 2, we can estimate all the transformation parameters.

4. RESULTS

As an example, in [5] we showed that to achieve perfect re-
construction for a 4-sided bilevel polygon, a 2-D E-spline
order of 12 is required to produce 5 projections at the an-
gles 0, 45, 90, tan−1(2) and tan−1( 1

2 ). With 2-D E-spline
order of 7 however we can produce 3 projections at the angles
0, 45, 90 on the reference signal, and a 2-D E-spline order of
7 on the second signal would give 3 projections for the ref-
erence signal at the angles θ, 45 + θ, 90 + θ where θ is the
rotation parameter. Assuming θ is not zero, we would have
enough projections to perfectly reconstruct the reference sig-
nal. Therefore an spline order of 7+2 = 9 (2 is needed for es-

timating the transformation parameters) on each signal would
give us enough projections to perfectly reconstruct the refer-
ence signal. An example for a 4-sided bilevel polygon with
two acquisition devices is shown in Figure 3 where the ref-
erence signal, its translated, rotated and scaled version, their
samples, the E-spline sampling kernel, and the reconstructed
reference signal are all shown.

5. CONCLUSION

In this paper we showed that with the use of Radon pro-
jections and generalized E-splines, symmetric multichannel
sampling of translated, rotated and scaled bilevel polygons
can be achieved. For estimating the geometrical transforma-
tions, we showed that as E-splines are a generalized version
of B-splines, we can reproduce combination of polynomials
and exponentials from E-splines. Therefore from the polyno-
mial moments up to order 2, we can estimate all the unknown
transformation parameters. For symmetric multichannel sam-
pling of geometrically transformed bilevel polygons, we il-
lustrated that the N+1 Radon projections needed for perfect
reconstruction of an N-sided bilevel polygon, can be sepa-
rated between the different channels, assuming that the ro-
tation parameter is not zero. Our sampling and reconstruc-
tion algorithm is based on noise-free communication between
the transmitter and receiver which is rather not very practical.
The future research of this work is to test the stability and
performance of our method in the presence of noise.
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